Build SummarizedExperiment using a Seurat object
Usage
dataset_seurat(
seurat_obj,
count_assay,
cell_id_col,
cell_type_col,
tpm_assay = NULL,
name = "SimBu_dataset",
spike_in_col = NULL,
additional_cols = NULL,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE
)
Arguments
- seurat_obj
(mandatory) Seurat object with TPM counts
- count_assay
(mandatory) name of assay in Seurat object which contains count data in 'counts' slot
- cell_id_col
(mandatory) name of column in Seurat meta.data with unique cell ids
- cell_type_col
(mandatory) name of column in Seurat meta.data with cell type name
- tpm_assay
name of assay in Seurat object which contains TPM data in 'counts' slot
- name
name of the dataset; will be used for new unique IDs of cells
- spike_in_col
which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation
- additional_cols
list of column names in annotation, that should be stored as well in dataset object
- filter_genes
boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below
variance_cutoff
- variance_cutoff
numeric, is only applied if
filter_genes
is TRUE: removes all genes with variance below the chosen cutoff- type_abundance_cutoff
numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types
- scale_tpm
boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6
Value
Return a SummarizedExperiment object
Examples
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol=300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol=300), sparse = TRUE)
tpm <- Matrix::t(1e6*Matrix::t(tpm)/Matrix::colSums(tpm))
colnames(counts) <- paste0("cell-",rep(1:300))
colnames(tpm) <- paste0("cell-",rep(1:300))
rownames(counts) <- paste0("gene-",rep(1:1000))
rownames(tpm) <- paste0("gene-",rep(1:1000))
annotation <- data.frame("ID"=paste0("cell-",rep(1:300)),
"cell_type"=c(rep("T cells CD4",50),
rep("T cells CD8",50),
rep("Macrophages",100),
rep("NK cells",10),
rep("B cells",70),
rep("Monocytes",20)),
row.names = paste0("cell-",rep(1:300)))
seurat_obj <- Seurat::CreateSeuratObject(counts = counts, assay = 'counts', meta.data = annotation)
tpm_assay <- Seurat::CreateAssayObject(counts = tpm)
seurat_obj[['tpm']] <- tpm_assay
ds_seurat <- SimBu::dataset_seurat(seurat_obj = seurat_obj,
count_assay = "counts",
cell_id_col = 'ID',
cell_type_col = 'cell_type',
tpm_assay = 'tpm',
name = "seurat_dataset")
#> Filtering genes...
#> Created dataset.